Small-Footprint Deep Neural Networks with Highway Connections for Speech Recognition
نویسندگان
چکیده
For speech recognition, deep neural networks (DNNs) have significantly improved the recognition accuracy in most of benchmark datasets and application domains. However, compared to the conventional Gaussian mixture models, DNN-based acoustic models usually have much larger number of model parameters, making it challenging for their applications in resource constrained platforms, e.g., mobile devices. In this paper, we study the application of the recently proposed highway network to train small-footprint DNNs, which are thinner and deeper, and have significantly smaller number of model parameters compared to conventional DNNs. We investigated this approach on the AMI meeting speech transcription corpus which has around 70 hours of audio data. The highway neural networks constantly outperformed their plain DNN counterparts, and the number of model parameters can be reduced significantly without sacrificing the recognition accuracy.
منابع مشابه
Exploiting Depth and Highway Connections in Convolutional Recurrent Deep Neural Networks for Speech Recognition
Deep neural network models have achieved considerable success in a wide range of fields. Several architectures have been proposed to alleviate the vanishing gradient problem, and hence enable training of very deep networks. In the speech recognition area, convolutional neural networks, recurrent neural networks, and fully connected deep neural networks have been shown to be complimentary in the...
متن کاملشبکه عصبی پیچشی با پنجرههای قابل تطبیق برای بازشناسی گفتار
Although, speech recognition systems are widely used and their accuracies are continuously increased, there is a considerable performance gap between their accuracies and human recognition ability. This is partially due to high speaker variations in speech signal. Deep neural networks are among the best tools for acoustic modeling. Recently, using hybrid deep neural network and hidden Markov mo...
متن کاملHighway-LSTM and Recurrent Highway Networks for Speech Recognition
Recently, very deep networks, with as many as hundreds of layers, have shown great success in image classification tasks. One key component that has enabled such deep models is the use of “skip connections”, including either residual or highway connections, to alleviate the vanishing and exploding gradient problems. While these connections have been explored for speech, they have mainly been ex...
متن کاملNoise Robust Keyword Spotting Using Deep Neural Networks For Embedded Platforms
The recent development of embedded platforms along with spectacular growth in communication networking technologies is driving the Internet of things to thrive. More complex tasks are now possible to operate in small devices such as speech recognition and keyword spotting which are in great demand. Traditional voice recognition approaches are already being used in several embedded applications,...
متن کاملLSTM, GRU, Highway and a Bit of Attention: An Empirical Overview for Language Modeling in Speech Recognition
Popularized by the long short-term memory (LSTM), multiplicative gates have become a standard means to design artificial neural networks with intentionally organized information flow. Notable examples of such architectures include gated recurrent units (GRU) and highway networks. In this work, we first focus on the evaluation of each of the classical gated architectures for language modeling fo...
متن کامل